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Abstract
We devised a novel measure that dynamically evaluates temporal
interdependences between two coupled units based on the properties of the
distributions of their relative interevent intervals. We investigate its properties
on the system of two coupled non-identical Rössler oscillators and a system of
non-identical Hindmarsh–Rose models of thalamocortical neurons and show
that the measure highlights the properties of phase synchronization observed in
those two systems. We postulate that the observed properties of the phase lag,
in conjunction with the experimentally observed activity-dependent synaptic
modification in the neural systems, may drive the changes of the direction
of information flow in a neural network, and thus the measure can play an
important role in assessing those changes.

PACS numbers: 87.18.Hf, 05.45.Xt, 87.17.Aa, 05.65.Tp, 87.19.La

1. Introduction

Synchronization and formation of spatio-temporal patterning have been studied extensively in
different systems ([1–5] and references therein). It has been hypothesized that such correlations
can play an important role especially in biological systems [6–9]. For example, it has been
postulated that synchronization in activity of the neural systems can play a crucial role during
information processing [10]. Moreover, it was recently established that relative timings
between the spiking of coupled neurons lead differentially to long- and short-term changes in
connectivity in the network [11–13]. This is due to the experimentally established fact that
synapses connecting presynaptic and postsynaptic neuron will be potentiated if the presynaptic
neuron fires a spike within a short window (up to few milliseconds) before the postsynaptic
one, and conversely it can be inhibited if the postsynaptic neuron emits a spike just before the
presynaptic one.
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To be able to monitor successfully such spatio-temporal patterning in dynamical systems in
general it is crucial to develop adequate methods to measure relative timings of the observed
events. Any method designed for this purpose must be statistical, based on information
obtained from multiple events, but at the same time, able to detect dynamical changes in the
system. Most of the methods used to detect temporal correlations between interacting elements
are based on cross correlations and provide statistical values of the degree of overlap between
the event timings. Those measures are symmetrical in their nature providing an overall level of
overlap between the firing patterns, and the small temporal shifts in the correlation peak may
be easily left undetected. However, in light of the aforementioned findings (i.e. the change in
connectivity depends asymmetrically on the timing of coupled neurons) the direction of those
shifts may be of crucial importance to the functioning of the network.

We have developed a novel measure that accounts for this asymmetry in temporal shifts
which, as will be shown below, can be used to gain a valuable insight into the activity of the
coupled non-identical units. The developed measure is based on the dynamical monitoring
of entropy changes in relative firing patterns between two units. We will refer to it as a
conditional entropy (CE) since it is calculated based on the relative timings of the events of
both coupled units. To show the applicability of the proposed method, we applied the measure
to monitor dynamics of a system of two non-identical, coupled units (Rössler oscillators and
then models of thalamocortical neurons). Our measure highlighted an important, earlier
observed phenomenon—the two non-identical units establish a phase synchronized state
[5, 14–19] with a phase lag that varies dramatically with the relative properties of the two units.
We link this observation to information processing in the neural systems in the conclusion of
the paper.

2. Conditional entropies—a measure of the properties of the phase
synchronization in the coupled system

After the seminal work of Shannon [20], the entropy measurement is often used in information
theory to obtain the statistical properties of a system and is directly linked to its dynamical
properties [21–24]. Here, the conditional entropies are calculated for every unit in the coupled
pair separately and they measure relative properties of the units with respect to each other.
When the information is combined, the entropies effectively monitor the changes in the
distributions of phase relationships between the two coupled units.

Here, the phase of the two units is converted into their event timings. The occurrence of
the event corresponds to a specific phase value of the unit. Such formulation is particularly
useful when the event defining a phase can be easily measured experimentally, i.e. spike of
neuron. Thus, to calculate the CEs we create two separate histograms that simultaneously
monitor relative interevent durations of the events

• of unit 2 with respect to the events of unit 1 and
• of unit 1 with respect to the events of unit 2.

The interevent durations �t12
lm of unit 2 with respect to unit 1 are calculated as a difference

between the timings of the event of unit 2
(
t2
l

)
and the last event of unit 1

(
t1
m

)
(i.e.

�t12
lm = t2

l − t1
m), and conversely the interevent timings �t21

jk of unit 1 are calculated as a
time difference

(
�t12

jk = t2
j − t1

k

)
with respect to the timing of the last event of unit 2 (see

figure 1). Thus, in essence two simultaneous questions are being asked: what are the properties
of the distribution of the event timings of unit 2 that occur directly after (and relative to) the
latest event of unit 1, and analogously what are the properties of the distribution of the event
timings of unit 1 relative to the latest event of unit 2? Such a definition of the measure highlights
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Figure 1. Relative interevent durations used to calculate the conditional entropy. The timings
of one unit are calculated with respect to the timing of the last event of the other. This assures
asymmetry of the measure with respect to the sign of the relative temporal shift of the events of
the two units. The labels t il on the x-axis denote the timing of the lth event appearing on the ith

unit (i ∈ 1, 2); the �t
ij

lm denotes the interevent duration between the timing of the last event on ith

unit (t im) and the timing of the lth event of the j th unit following it (t
j

l ).

the asymmetry in the treatment of the relative timing delays, but when combined provides full
information about the interaction between the two coupled units. The measure will identify
any phase locking appearing between the two units, as the width of the distributions of the
interevent times between the units will vary significantly. The unit that is being driven will
generate an event with a relatively small and constant delay after the event of the driving unit
creating a narrow interevent distribution. On the other hand, the reversed interevent times will
depend on the dynamical properties of the driver itself (i.e. patterns of external input) and may
vary significantly generating wider distribution in the interevent times.

Additionally, to allow the measure to monitor changes in the distributions of the relative
event timings the distributions are updated continuously (‘on line’), as the events occur at
unit 1 and/or unit 2. Specifically, the distribution of the relative event timings of unit
2 with respect to the last event of unit 1 is updated as the event occurs at unit 2, and
conversely, the distribution of the timings of unit 1 with respect to the timing of the last
event of unit 2 is updated at the time the event occurs at unit 1. The distributions are
updated by increasing the bin of the appropriate distribution within which the latest timing
falls by a fixed �P . Specifically, if nth event occurs at time tn so that the relative event
timing �t

ij

n−1 is of the length �T (I − 1) < �t
ij

n−1 � I�T and the timing falls within the
bin I, the cumulative probability of bin I at tn is given by PI (tn) = PI (tn−1) + �P . The
updated distribution is then renormalized. The parameter �P effectively determines
the speed with which the distribution is to be updated based on information obtained from the
newest events. Therefore, if the properties of the distribution change so that the given bin Q
is not updated during last n events, then the probability of that bin at the time of the event m
declines to

PQ(tm) = 1

(1 + �P)n
PQ(tm−n). (1)

The conditional entropies are calculated from the normalized distributions, S =
−∑

I PI ln PI , each time the distributions are updated.
The strength of the measure is that it provides dynamical assessment of the properties of the

phase shift based on the event timings. The measure essentially provides separate information
about the width of the distributions of relative interevent times between the units, highlighting
the possible asymmetry between the two distributions. This information is especially useful
in neuroscience where monitoring temporal interdependences between the coupled neurons
can yield critical information about pattern formation during information processing.
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3. Measurement of phase synchronization of two non-identical oscillators

Synchronization between two identical coupled units has been studied extensively during the
last decade (see, for example, [2, 25–27]). However, in many cases even though the dynamics
of the systems are driven by the same underlying processes (i.e. they are described by the
same sets of equations), the macroscopic properties of their trajectories will be dramatically
different and will depend on the sets of control parameters. This is well exemplified in neural
systems where the emission of action potentials by neurons is driven by the same underlying
processes (appropriate ionic currents), but it is impossible to assume that all the properties
of those ionic currents (conductances for example) as well as currents from external inputs
will be the same at every neuron. Moreover, it has been established experimentally that the
same neuron can change its firing pattern dramatically depending on the cognitive state of
the animal [28]. Thus the spatio-temporal patterns formed by non-identical units (i.e. having
different values of their control parameters) can be of significant importance.

If those control parameters are different, the coupling of the trajectories between such
systems cannot lead to complete synchronization since the systems will have effectively
different dynamical properties. It has been shown, however, that two coupled non-identical
chaotic oscillators can achieve phase synchronization—the state when their relative phases are
locked but their amplitudes vary ([1, 14, 15, 17, 19] and references therein). The properties
of the obtained phase lag during the phase synchronization vary with the relative frequencies
of the coupled units and the coupling strength.

We tested our measure on a system of coupled Rössler oscillators [29] that differ via the
value of their control parameters that influence the dynamical properties of their trajectories,
and then applied it to a system of two coupled Hindmarsh–Rose models of spiking neurons
[30]. Depending on the values of the control parameters the trajectory of both systems can be
chaotic or periodic. However, since in both examples the units are oscillatory systems, one
can define a temporal phase angle and average frequency [5, 15].

3.1. Two coupled non-identical Rössler oscillators

The events for the Rössler oscillator were defined as the times at which the oscillator’s
trajectory (unit 1 or 2) crosses a specified Poincare section (z = 1). The equations for the
coupled Rössler system are

ẋ1,2 = −(z1,2 + y1,2) ẏ1,2 = x1,2 + a1,2y1,2 + α(y2,1 − y1,2)
(2)

ż1,2 = b + (x1,2 − c)z1,2

where the subscript denotes the oscillator number; a1,2, b = 0.2, c = 10.0 are the control
parameters of the oscillators and α = 0.4 is the coupling. The values of parameters a1 and a2

were different for both units.
We found that our measure highlighted an important result. Within the same numerical

integration of the coupled units, the CE of the oscillator with a larger control parameter (ai)

is close to zero, whereas the CE of the oscillator with lower value of ai is significantly higher
(figure 2(A)). Moreover, a small change in the values of the control parameters from a1 > a2

to a1 < a2 generates a dramatic change in the values of conditional entropies (figures 2(A) and
(B)). Both conditional entropies are equal to zero when a1 = a2 (the two units are identical).
Such behaviour of the CEs is due to the fact that if the coupling is strong enough the two
coupled non-identical units (the case when a1 �= a2) achieve phase synchronization [14, 15].
Here, the value of the phase is represented by the timing of the defined event. Thus the quantity
that is being measured is not the value of the phase at the given moment in time, but the timing
when the specific value of the phase was achieved.
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Figure 2. Conditional entropy calculated for two Rössler oscillators with different values of control
parameters (a1,2). Panel A: a1 is varied from 0.1 to 0.4 and the control parameter of unit 2 is
fixed at a2 = 0.3; the coupling constant α = 0.4. Panel B: a greyscale map of the conditional
entropy difference when both a1,2 are varied from 0.1 to 0.4. Panels C and D: the relative timings
of the events (crossings of the Poincare section z = 1) for the two units when (C) a1 > a2 and
(D) a2 > a1.

As has been established earlier [14, 15], the phase at which the two units synchronize
depends on the relative values of their average frequencies that in turn are determined by the
relative values of their control parameters. The phase of the unit with the higher value of the
control parameter will precede that of the unit with the lower value of ai (see figures 2(C)
and (D)) i.e. the event of the unit with the higher ai will precede that of the unit with lower
one. This shift does not change significantly during the evolution of the two units. Since the
distributions used to estimate CEs are based on those relative interevent times, the distribution
of those interevent durations of unit having lower value of ai with respect to unit having higher
one will have a narrow peak corresponding to the value of the phase shift—the entropy of such
distribution will tend to zero. On the other hand, the distribution of the events of the unit with
smaller ai will be significantly wider since the next event timing will be loosely correlated
with the timing of the previous one—the CE will retain significantly higher value.

For the case when a1 = a2 (identical units) the complete synchronization is obtained (as
expected) and thus the phase shift for both units is equal to zero.

We measured the existence of this property of the phase shift for extended number of ai

pairs of the coupled units. Figure 2(B) shows a greyscale map representing the difference
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Figure 3. The changes of conditional entropy are monitored during different phases of the same
integration. The integration lasted for 15 000 s and included five sections of 3000 s each. The
settings for every section are listed in the figure. The values of the CEs change rapidly as the
relations between control parameters of the coupled units change.

between the conditional entropies (S1 − S2); white denotes the minimal value whereas black
denotes the maximal one. The x-axis denotes the value of the control parameter of unit one
(a1); the y-axis corresponds to the value of the control parameter of the other unit (a2). Since
the CEs will detect the direction of the shift and not its value, the values of the difference do
not change significantly except along the diagonal (a1 = a2). On the diagonal their difference
effectively switches sign. This indicates that the direction of the phase shift depends solely on
the relative values of the control parameters of the coupled units.

To illustrate the changes of the CE when the phase relations between the units dynamically
change, we integrated the trajectories of the two oscillators for 15 000 s (figure 3). The relative
values of the control parameters, ai , are changed every 3000 s. As the relative values of ai

change, the conditional entropies change dramatically following the changes in the phase lag
of the two units:

• α = 0 in I and V sections—the two units are independent and both have high conditional
entropies;

• α = 0.4 and a1 = a2 in section II—the conditional entropies of both units decrease to
zero (complete synchronization is obtained);

• α = 0.4 and a1 �= a2 (sections III and IV)—the conditional entropies of the two units
change rapidly at the onset of the sections, with the CE of the unit with higher value of
ai approaching zero, and that of the other unit retaining significantly higher value (phase
synchronization with the phase lag depending on the relative values of control parameters
is obtained).

The rate of change of the CEs at the start of every section is determined by the rate of
distribution updates, �P .

We investigated the behaviour of the proposed measure as a function of the coupling α

(figure 4). As in the calculations performed for figure 2, the control parameter of one unit was
kept constant and that of the second unit was varied. When the coupling is equal to zero both
oscillators are independent, there is no phase relation and thus their conditional entropies are
high (figure 4(A)). However, the described timing interdependences materialize even for small
couplings. For a coupling as low as α = 0.2 the conditional entropies for both oscillators
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Figure 4. The changes of the conditional entropy in the presence of the coupling of different
strengths. The control parameter a1 was varied from 0.1 to 0.4, a2 = 0.3 and was fixed. The
coupling strength α is denoted on top of every panel.

are significantly different (figure 4(B)) even though they are not zero, indicating that the
phase synchronization is not complete and the phase fluctuates considerably. The conditional
entropies S1 = S2 and are equal to zero, when both oscillators have the same values of their
control parameters (figure 4(C)), indicating complete synchronization. At larger couplings
the phase synchronization is obtained and the entropies take their corresponding values
(figure 4(D)).

Finally, we investigated robustness of the measure in the presence of noise. The added
noise could represent in experimental conditions random jitter associated with dynamics of
the experimental system or error of the measurement. A term Aξ1,2(t) was added to the
y-coordinate of each of the oscillators. The amplitude, A, was varied from 0 to 10 and
ξ(t) ∈ [−1, 1] was a randomly generated, uniformly distributed variable. The observed phase
shift was relatively robust with respect to noise (figure 5). However the transition region
around the point where a1 = a2 widened considerably as the noise increased (figures 5(B),
(C) and (D)). This is due to the fact that the magnitude of the phase lag is proportional to the
difference of the control parameters of the coupled units. For similar values of ai the shifts
are relatively small and the applied noise can randomize event order (i.e. the event of a unit
with smaller ai will sometimes take place before that of the unit with larger ai). For larger
phase shifts, phase variation due to noise in not large enough to randomize the order of the
measured events.
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Figure 5. Stability of the relative timings of the events in the presence of noise. The conditional
entropy is measured for different relative values of the control parameters of the coupled Rössler
oscillators (as before a1 was varied from 0.1 to 0.4, a2 = 0.3 and was fixed). The amplitude of
noise, A, is marked on each panel. The region of CE transition widens considerably.

3.2. Two coupled models of thalamocortical neurons

We also applied our measure on the Hindmarsh–Rose model of thalamocortical neurons
[30–32]. The equations for the coupled Hindmarsh–Rose neurons are

ẋ1,2 = y1,2 − ax3
1,2 + bx2

1,2 − z1,2 + I01,2 + α(x2,1 − x1,2) ẏ1,2 = c − dx2
1,2 − y1,2

(3)
ż1,2 = r[s(x1,2 − x0) − z1,2]

where the subscript denotes the neuron number; a = 1.0, b = 3.0, c = 1.0, d = 5.0, r =
0.006, s = 4.0 and x0 = −1.6 are the parameters of the model and α = 1.1 is the coupling
strength. The parameter I0i

represents the amplitude of the external current applied to the
neuron and is the control parameter of the system. We performed measurements of conditional
entropies for the two coupled neurons. Here, the event timings were naturally chosen to be the
timings of action potentials emitted by the neurons. As before, the control parameter I0i

of the
two neurons was varied (figure 6). The conditional entropies changed in the same manner as in
the case of the Rössler oscillators, indicating the formation of a phase synchronization between
the two neurons (figures 6(C) and (D)). As before the direction of the phase shift depended
only on the relative values of the control parameters (i.e. relative frequencies of the coupled
neurons) and again appeared over the whole range of the control parameter pairs (figure 6(B)).
The grey scale denotes the difference between the conditional entropies of the two neurons;
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Figure 6. Conditional entropy calculated for two Hindmarsh–Rose neurons with different relative
levels of the external current (value of I01,2 ). Panel A: I01 is varied from 1.32 to 3.4 and the control
parameter of neuron 2 is fixed at I02 = 2.5. Panel B: a greyscale map of the conditional entropy
difference when both I01,2 are varied from 1.32 to 3.4. Panels C and D: the relative timings of the
spikes for the two neurons when (C) I01 > I02 and (D) I02 > I01 .
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4. Conclusions—implications for information processing in neural systems

In conclusion, we have constructed a measure that dynamically monitors the changing
properties of phase synchronization in two coupled units. The method is based on a
separate measurement of the distributions of relative interevent durations occurring in the two
coupled systems and essentially identifies and compares the temporal structure of the changes
of their phase shifts over time. At the same time, this method highlights a possible asymmetry
between the two patterns. We have shown properties and the sensitivity of the measurement
for two coupled Rössler oscillators and the Hindmarsh–Rose model of spiking neurons.
Our measure has highlighted the earlier established fact [14, 15], that the properties of the
phase synchronization between two coupled oscillatory units depend critically on the relative
frequencies between the two. The unit with the lower frequency will have a stable positive
phase lag with respect to the one with higher frequency. This phase lag is represented as a
difference of event timings that in turn denotes a specific phase of the unit (Poincare section in
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the case of Rössler oscillators and timing of an action potential in the case of the Hindmarsh–
Rose model of a neuron). The value of the conditional entropy is highly sensitive to the
directionality of the phase lag—it converges to zero if the phase lag of one unit is positive,
and thus consistent with respect to that of the other unit and approaches relatively higher
value otherwise. We have also shown that the measure performs well in the presence of noise
indicating its applicability to experimental measurement.

Our proposed method could be particularly useful in detecting interdependences between
neural populations. Applications of our measure to identify temporal interdependences of the
spike trains of two neurons may lead to increased understanding of spike timing dependent
changes in the network structure. We postulate that the properties of the phase shift during
a relatively weak event of the phase synchronization can be of significant importance to the
functioning of neural systems.

It has already been shown that synchronization is prevalent in the neural systems.
Furthermore, it has been established that changes in connectivity in a network (through
synaptic modification) depend crucially on the relative timings of the action potentials emitted
by the coupled neurons. Specifically, it was experimentally established that synaptic long-
term potentiation (LTP) and long-term depression (LTD) as well as the short-term changes
in synaptic strength are directly linked to the relative timings of the emitted spikes [11–13].
That is, if the presynaptic neuron emits a spike in a narrow window before the postsynaptic
neuron the connecting synapse will be potentiated. Conversely, if the postsynaptic neuron
emits a spike systematically before the presynaptic neuron the corresponding synapse will
be depressed. Therefore, if two neurons are reciprocally coupled (as it commonly happens
in the neural systems) having two synapses (from neuron 1 to neuron 2 and a separate one
from neuron 2 to neuron 1) and if neuron 1 receives a higher synaptic input than neuron 2
(as in the case of the Hindmarsh–Rose example) the synapse mediating depolarization from
neuron 1 to neuron 2 will be potentiated over time and the other one depressed. However, if
the relative input strength changes so that now neuron 2 receives higher synaptic input than
neuron 1 the situation is reversed—the synapse mediating signals from neuron 2 to neuron 1
will be potentiated whereas the other one will undergo depression.

We have performed a simple simulation to illustrate this point and the results are shown
in figure 7. We allowed the coupling strengths, α1,2, between two Hindmarsh–Rose neurons
(in equation (3)) to become independent variables that are linked to respective conditional
entropies. The general form of those changes is given by

α1,2 = λ

1 + βS2
1,2

(4)

where λ = 1.1 and β = 5.0 are constants. Additionally, the coupling strengths are bounded
so that α1,2 ∈ [0.2, 1.2]. Initially, the neurons have the same coupling (α1,2 = 1.1), but
different external inputs, I01 and I02 (as indicated in figure 7). The coupling α1 from the
neuron with higher input became progressively stronger whereas that of the other one became
significantly smaller until the bounding values were achieved. At t = 3000 ms the external
input to the neurons was changed, so that the neuron with the previously lower input now
received a stronger input. The change evoked rapid synaptic modifications (changes in the
coupling strength α1,2) driven by the changing conditional entropies, and thus by the properties
of relative timings between the spike times of the two neurons. When steady state was again
achieved the synapses effectively reversed their efficacy. Thus the neuron that was initially
driven became a driver (figures 7(A) and (B))—the information flow is reversed.

It is important to note that the goal of this simulation is to show the possible relevance
of the properties of the phase lag during phase synchronization achieved by two neurons
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Figure 7. Simulation of the modifications of the non-symmetrical coupling between the neurons
with changing input strengths. The information flow reverses itself as the relative input strengths
are changed: (A) conditional entropies and (B) coupling strengths (α). The input strength of the
two units is switched at t = 3000 ms.

by inducing structural changes in the network and additionally the possible application of
conditional entropies to identify them. In neural systems, these synaptic modifications are
achieved by complex molecular processes.

These results imply that the network can use properties of phase synchronization to alter its
structure during information processing and, if the synaptic modifications due to those timing
relations are large enough the direction of the information flow in the network can be altered.
Essentially, with a minor change in internal or external environment the master–slave relation
between the two neurons can be reversed—the postsynaptic neuron can become a presynaptic
one and drive the neuron that was driving it earlier. Thus, in fact the informational content
(the external current differentially stimulating appropriate neurons), or internal modifications
of the ionic currents can alter the information flow in the network.

The postulated hypothesis will now be investigated experimentally.
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[29] Rössler O E 1976 An equation of continuous chaos Phys. Lett. A 57 397
[30] Hindmarsh J L and Rose R M 1994 A model for rebound bursting in mammalian neurons Phil. Trans. R. Soc.

B 346 129
[31] Hindmarsh J L and Rose R M 1994 A model of intrinsic and driven spindling in thalamocortical neurons Phil.

Trans. R. Soc. B 346 165
[32] Hindmarsh J L and Rose R M 1994 Resonance in a model of a mammalian neuron Phil. Trans. R. Soc. B 346

151


